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Summary 

The statistical performance of a dynamical system is considered, 

Random initial conditions and/or random forcing functions cause the state 

variables of the system to be random variables rather than deterministic 

quantities. Nonetheless, a deterministic o r  nominal system path may be 

defined, and the performance of the system evaluated in terms of the 

nominal plus the statistics of the perturbations from the nominal. Under 

a rrsmallff perturbation assumption, the perturbation equations are linear- 

ized. Adding the assumption of Gaussian input statistics, the state pertur- 

bations become Gaussian random variables. The probability that a given 

function of the terminal state lie within certain bounds may then be corn- 

puted. Necessary conditions for  the nominal initial conditions and/or 

control programs which maximize that probability are given. A straight- 

forward gradient approach for numerical solution is sketched. 
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Description of the Problem 

The system under consideration is assumed to satisfy a set of simul- 

taneous first order ordinary differential equations 

;r = f ( X , U , W , t )  

where 

x is an n-vector* of state variables 

u is an m-vector of control variables 

w is a p-vector of random forcing functions 

f is an n-vector of known functions of x, u, w, t 

t is the independent variable (usually time) 

The system operates over a finite internal t 5 t tf a Because of the 
0 

random forcing functions and/or random initial conditions, the state is a 

random vector. It is assumed that the control programs u( t ) will be the 

same for each operation of the system. The state history is written 

x ( t )  = Z( t )  + b x ( t )  

where ;( t )  is, by definition, the solution of (1) when there are no random 

perturbations. Thus, ;( t ) satisfies 

- 
x = f ( X , U , O , t )  

3 Z  * Vectors are column vectors with the exception that - where z is a scalar v9 
3 Z  

and p is a vector, is a row vector. Hences 68 is a scalar product. 
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The initial conditions satisfy 

x ( t o )  = x(to)  + 6 x ( t o )  

where z( t ) may be partly given and partly f ree .  The random component 

of x( t ) is 6x( t p In this analysis it is assumed that 6x( t ) is a vector 

of Gaussian random variables, with given covariance 

0 

0 0 0 

The random forcing functions w( t )  are assumed to be Gaussian white noise, 

with covariance 

The initial time to is assumed given. The terminal time t is f 
determined from 

s2l-X(tf) , t f1  = 0 

where hl is a known function of x and to  In particular, the nominal 

terminal time f is determined from (7) with 2 in place of x. 
f 

The problem is to choose the control programs u( t ) and those com- 

ponents of F(t ) which a r e  unspecified in order to m a i m i z e  the probabillty 

that a given scalar function q [x( t ), t .I will lie between t s o  values a and 

0 

f i  

b .  

statement. 

and is mathematically tractable e 

This definition of probability of success is only one posslkk problem 

It does, how6ver., appear mow me iningful  thlm man> othc x s 
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The Linearized Perturbation ApproxLFtion 

The problem as described is meaningful and usually will have a solution. 

Unfortunately, there is no procedure available for evaluating the probabiliry 

that <p [x(  t ) t 1 lie between a and b besides the Monte Carlo approach, f ' f  

unless major simplifications a r e  introduced : The crucial approximwtion of 

this (and many another) analysis is that the perturbations 6 x ( t )  are always 

"small enough" that a negligible e r ror  is made by linearizing the perturbation 

equations: 

Because (8) is linear, and because 6 x ( t  ) and w ( t )  a r e  Gaussian, 6 x ( t )  
0 

will also be a vector of Gaussian random variables. Under this condition 

the problem as stated can be solved, 

The smallness assumption restricts the magnitudes of X( t j, Q(t ) ,  
0 

a2 f 
to assume that (1) is linear in w( = 0 ) The square of a white noise 

2 
a W  

component is not integrable. ) There is no simpler way to state the restriction 

than to say that (8) must produce Sx( t )  with negligible e r r o r .  

* The second partials are merely symbolic expressions for third order tensors 

such as 
2 a fi  

ax.  a x  
J k  

, i, j ,  k = 1, - - - > n *  
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Evaluatio? of the Probability of .Success 

The function cp[x(t ) t 1 may be written f ' f  

To first order, consistent with (8), 

a 'p  
d q  = (ax) 6x( i f )  + Gdtf  

f t=t 

where 

f 

(p = [gx + 

and d t is determined from f 

Substituting f o r  d tf f r o m  (11) 

Because 6 x (  t ) is a vector of Gaussian random variables, 

scalar. The probability that cp [x ( t  ), t 1 lie between a and b is f f  

d q  is a Gaussian 
f 
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where 
u 2 = @ [ ( d ~ p ) ~ ]  

2 d T T o may be evaluated by integrating - e [ p 6x 6x c 1 ~ with 
dt 

This gives 

Equation (17) has used the noise statistics (6) and the relation 

T 1 a f  
& [ : 6 x ( t )  w ( t ) ]  = 2 z(t)Q(t) 

Necessary Conditions for  an Extrema1 Solution 

A standard variational approach is to adjoin the constraint equations 

to  the performance index by use of Lagrange multipliers. In this problem 

the constraint equations are (3) and (15). The augmented J is written 

(14) 
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where A ( t )  and &( t )  are each n-vectors of Lagsange multiplier 

functions. 

If J is to be a relative maximum, it must be stationary with respect 

to arbitrary small perturbations in x< t ) and/or u( t ). A small change 

in J is given by 
0 

2 2 2  
d J  = - e -’ / 2 0  (1  + ~ ) d y ] d u  Y 

0 u a-cp 

2 2  
-(a-$) / 2 u  - e  - 1 [ e -(b-iij)2/2u2 

JzaJ 

0 

Equation (20) is the change in J due to changes in the nominal path. d o  

m y  be determined f rom (17): 
- 

a f  a T af  a €  tf T 
2 o d o  = 2 ( <  x6P)o + bCTEQ(z) 6C + g Q ( a w )  <16F 

t 
0 

d<p is obtained directly f rom (12) by using ) in place of 6x (if 1. f 
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The 6;; and 6i terms in (20) are integrated by parts, in t.he usual 

manner. Finally, d J  may be written as 

where 

Necessary conditions for stationary J include 

I Taf + d [ c T a f & ]  + - - [cTdfQ(-)  ~a af  93 = 0 
a x  a x  a x  2 0  a x  a w  aw 

iT + x 
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T Each t e r m  in the scalar product ( X  b y )  

o r  the 6 X  component is zero. 

is zero either because the lo 
0 

0 

The necessary conditions are the coupled differential equations for 
- 
x, p ,  A ,  & with mixed boundary conditions, and (27) which gives the ex- 

tremalizing u( t ) as a function of x, [g , X and & . 

One ;.ather awkward possibility has been omitted in obtaining d J. 

ro This is the dependence of y upon u ( t  ). If there is such dependence, f 61 
some constraint must be placed on in the neighborhood of t in order f 

to avoid violating the continuity assumptions implicit in the d J derivation. 

Refs. [l] and [2] make attempts at imposing sensible constraints. This 

problem is really too specialized to discuss further in this paper. 
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Simple Example Problem 

Consider the one variable system which satisfies 

2 
x = - X I - x  

Suppose that the problem is to  maximize the probability that 1x<1)1 a. 

x (0) is free to be selected, 6x(O) is a Gaussian random variable with 

variance u . There is no control variable u, and n = t - 1 ( t  = O  ). 

The linearized perturbation approximation in this case requires that 1x1 

be always much less than one. Hence, for  the problem to be interesting, 

a must be much less than one. 

- 

2 
0 0 

Equation (28) can be integrated analytically. The solution (for x < 1 ) 
0 

is 

X 
0 - t  e - _ -  - X 

1 - x  1 - x  
0 

where x(0) = x . With solution (29), one can relate x = *a to the value of x 
0 0 

which produces it. Hence, the probability that - a 5 x(1) 5 a is equal to the 

probability that -b2 5 xo bl. For a = .05, b = .120, b = .158, the 1 2 

probability that x lie between - .158 and f .120 is 
0 
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since the integration is over the probability distribution of 6x 

6x = x - x . For  this example there is no need to use the necessary 

and 
0' 

m 

0 0 0  

conditions of the previous section because of the analytic solution (29). 

In fact, it is obvious f rom the nature of e -y2'2 '0 that the value of 

x 

negative of the upper limit. Hence, x = - .019 is the extremalizing 

2 

- which maximizes (30) is the one which makes the lower limit the 
0 

- 
0 

choice, for a = .05 and for  any u . 
0 

It is readily observable that x + 03 in finite time if x > 1. 
0 

Hence, b 

cedure to be valid. Without solution (29), however, it would also be 

necessary to  limit u so  that a sufficiently accurate approximation 

must be less than one for  the above computational pro- 
1 

0 

could be carried out. 

For  the system governed by (28), the perturbation equation before 

linearization is 

2 6 i  = - ( 1 - 2 X ) 6 X  + (6x) 

In order to use (€9, the llsmallness'l assumption is 

( 6 x ) 2  << (1 - 2;) 

Thus, it is easy to observe the requirement that 

(T P << ( 1 - 2 x )  
0 0 

It is apparent that 1;; I << 1, s o  (33) requires 0 
0 0 

<< 1. 
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Computing the Gradient of J for  Iterative Optimization 

The essence of a gradient method is calculation of the relation between 

changes in the performance index and changes in the control variables or 

parameters. Here, u ( t )  and/or x ( t  ) are the controls. The steps in a 

straightforward gradient procedure are as follows : 
0 

1. Choose x ( t  ) and u( t ) ,  calculate x ( t )  from (3), with 
6 3  0 

a f  a"f af 
f a x 9  2 '  a w 9  

t determined by (7). Calculate and store - 
9 a x  

2. Calculate and store c( t )  using (16) and (15). Calculate 

o f rom (17). Calculate Q and @. 

3 .  Calculate and store t ( t )  using (26) and (25). 

4.  Calculate A ( t )  using (24) and (23), and simultaneously 

calculate and store the left hand side of (27), which will 

not be zero. 

By following these steps, the predicted change in J due to a "smalltt change 

in  x ( t  ) and/or u ( t )  is 
0 
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The gradient of J with respect to x ( t  ) and u( t ) is clear from (34; 

References [3, 4,53 describe procedures for using the gradient to Improve 

the choices of ? (t, ) and u( t 

0 

It should be observed that any numerical scheme which has been 

applied to deterministic optimization can (at least conceptually) be used for 

maximizing J of this paper. Given the input statistics, J becomes a 

deterministic quantity and may be treated with deterministic optimization 

techniques. 

Joint Probabilities 

Suppose that the desired objective is to maximize the joint probability 

that cpl[x( tf ), tfl be between a and bl and that cp [x(t . I ,  t 1 be between 

dcpl and d q  a and bg. Arguing as before, 

variables, and the joint probability of interest may be written as 

1 2 f f  

2 
are both Gaussian random 

2 

J =  1 

277 
S”1-’F1 - dY 

al ‘Ql 

where 
tc 

1 T T  
2 Z -cy I P - ~ ~ ~ I I  d z  expi- 

J -  
a2 ‘Q2 

where ti is the solution of (15) using boundary condition (16) with cp in i 

place of cp. Both theoretically and computationally, two [( t solutions 

are required. Further, two &(t)  solutions are required. The entire de- 

velopment may be carried through by analogy to  produce d J as a function 
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, 

of 6 x ( t  ) and Gudt). The necessary conditions for stationary J are simply 

extended forms of the ones previously given. 
0 

Finally, it is clear that the number of functions of the terminal condi- 

tions that may be considered may be as many as, but not more than, n, the 

number of state variables. J becomes an integral over the joint distribution 

of the Gaussian random variables d q  1, d’pz, - - - p  d” k 5 n. There will 

be 2 k  expressions similar to, but more complex than, the a and /3 ex- 

pressions. The basic approach, however, both conceptually and numerically, 

is unchanged with k larger  than one. 
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